R/FakePatientsDB.R
create_fake_subjectDB_clustered.Rd
Create a fake subject database with clustering
create_fake_subjectDB_clustered(
n_subjects = 50,
n_facilities = 10,
avg_n_stays = 3,
days_since_discharge = NULL,
length_of_stay = NULL,
n_clusters = 3
)
the number of different subjects in the database
the number of facility present in the database
the average number of stays per subject
the number of days between a discharge date and an admission date (default: max(0, rnorm(1, mean = 30, sd = 10)))
the length of stay (default: max(1, rnorm(1, mean = 5, sd = 3) )
the number of cluster in the network
a data.table containing all subjects stays
mydb <- create_fake_subjectDB_clustered(n_subjects = 100, n_facilities = 10)
mydb
#> sID fID Adate Ddate
#> 1: s01 f4 2019-01-30 2019-01-31
#> 2: s01 f7 2019-03-16 2019-03-25
#> 3: s01 f7 2019-04-22 2019-04-26
#> 4: s01 f4 2019-06-04 2019-06-10
#> 5: s02 f7 2019-01-10 2019-01-18
#> ---
#> 270: s81 f7 2019-03-25 2019-03-29
#> 271: s84 f7 2019-05-04 2019-05-11
#> 272: s82 f3 2019-05-10 2019-05-17
#> 273: s98 f9 2019-02-28 2019-03-09
#> 274: s67 f4 2019-04-12 2019-04-15